Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Time-reversal symmetry (TRS) is pivotal for materials’ optical, magnetic, topological, and transport properties. Chiral phonons, characterized by atoms rotating unidirectionally around their equilibrium positions, generate dynamic lattice structures that break TRS. Here, we report that coherent chiral phonons, driven by circularly polarized terahertz light pulses, polarize the paramagnetic spins in cerium fluoride in a manner similar to that of a quasi-static magnetic field on the order of 1 tesla. Through time-resolved Faraday rotation and Kerr ellipticity, we found that the transient magnetization is only excited by pulses resonant with phonons, proportional to the angular momentum of the phonons, and growing with magnetic susceptibility at cryogenic temperatures. The observation quantitatively agrees with our spin-phonon coupling model and may enable new routes to investigating ultrafast magnetism, energy-efficient spintronics, and nonequilibrium phases of matter with broken TRS.more » « less
-
Abstract A challenge in the synthesis of single‐wall carbon nanotubes (SWCNTs) is the lack of control over the formation and evolution of catalyst nanoparticles and the lack of control over their size or chirality. Here, zeolite MFI nanosheets (MFI‐Ns) are used to keep cobalt (Co) nanoparticles stable during prolonged annealing conditions. Environmental transmission electron microscopy (ETEM) shows that the MFI‐Ns can influence the size and shape of nanoparticles via particle/support registry, which leads to the preferential docking of nanoparticles to four or fewer pores and to the regulation of the SWCNT synthesis products. The resulting SWCNT population exhibits a narrow diameter distribution and SWCNTs of nearly all chiral angles, including sub‐nm zigzag (ZZ) and near‐ZZ tubes. Theoretical simulations reveal that the growth of these unfavorable tubes from unsupported catalysts leads to the rapid encapsulation of catalyst nanoparticles bearing them; their presence in the growth products suggests that the MFI‐Ns prevent nanoparticle encapsulation and prologue ZZ and near‐ZZ SWCNT growth. These results thus present a path forward for controlling nanoparticle formation and evolution, for achieving size‐ and shape‐selectivity at high temperature, and for controlling SWCNT synthesis.more » « less
An official website of the United States government
